Package 'ALLSPICER'

Title: ALLelic Spectrum of Pleiotropy Informed Correlated Effects
Description: Provides statistical tools to analyze heterogeneous effects of rare variants within genes that are associated with multiple traits. The package implements methods for assessing pleiotropic effects and identifying allelic heterogeneity, which can be useful in large-scale genetic studies. Methods include likelihood-based statistical tests to assess these effects. For more details, see Lu et al. (2024) <doi:10.1101/2024.10.01.614806>.
Authors: Wenhan Lu [aut, cre]
Maintainer: Wenhan Lu <[email protected]>
License: MIT + file LICENSE
Version: 0.1.9
Built: 2024-11-17 05:56:31 UTC
Source: https://github.com/cran/ALLSPICER

Help Index


ALLSPICE

Description

ALLSPICE (ALLelic Spectrum of Pleiotropy Informed Correlated Effects)

Usage

ALLSPICE(
  data,
  pheno_corr,
  n_ind,
  gene = "GENENAME",
  pheno1 = "PHENO1",
  pheno2 = "PHENO2",
  beta1_field = "BETA1",
  beta2_field = "BETA2",
  af_field = "AF"
)

Arguments

data

Input data with number of rows indicating number of variants, three columns are required: 1) effect sizes of variants for phenotype 1, 2) effect sizes of variants for phenotype 2, 3) allele frequency of variants Note: this should include variants from ONE gene that is associated with the two phenotypes, preferably of the SAME functional category after being filtered to variants with allele frequency below a certain threshold (e.g. 1e-4)

pheno_corr

phenotypic correlation between the two phenotypes being tested

n_ind

total number of individuals

gene

name of the gene being tested, default 'GENENAME'

pheno1

descriptive name of phenotype 1, default 'PHENO1'

pheno2

descriptive name of phenotype 2, default 'PHENO2'

beta1_field

field name for effect sizes of variants on phenotype 1, default 'BETA1'

beta2_field

field name for effect sizes of variants on phenotype 2, default 'BETA2'

af_field

field name for allele frequencies of variants, default 'AF'

Value

A list of summary statistics from ALLSPICE test including phenotype names, gene names, MLE of slope c, ALLSPICE test statistic - lambda, pvalue from a chi-square distribution, total number of variants being tested

Examples

data <- data.frame(x = rnorm(10), y = rnorm(10), z = runif(10, 0,1))
ALLSPICE(data,pheno_corr=0.5,n_ind=10000,beta1_field='x',beta2_field='y',af_field='z')

ALLSPICE_simulation

Description

Simulate data and run ALLSPICE

Usage

ALLSPICE_simulation(n_ind, n_var, c, r, pi, sigma, mle = TRUE, null = TRUE)

Arguments

n_ind

total number of individuals

n_var

total number of variants

c

slope between the two sets of variant effect sizes, only applicable when 'null' == TRUE

r

phenotypic correlation between the two phenotypes

pi

probability of variant of having no effect on the phenotype

sigma

variance of the two sets of effect sizes

mle

whether to use MLE of c to compute the test statistic, use true c value if FALSE

null

whether to simulate data under the null hypothesis (no linear relationship) or the alternative hypothesis

Value

A list of two pieces of results: 1) ALLSPICE test results 2) effect size table: true effect size simulated, effect size estimate from linear model, effect size estimated from MLE

Examples

ALLSPICE_simulation(n_ind=10000, n_var=100, c=0.6, r=0.5, pi=0.5, sigma=1, mle = TRUE, null=TRUE)

format_ALLSPICE_data

Description

data formatting function: format raw data to be loaded into ALLSPICE

Usage

format_ALLSPICE_data(data, beta1_field, beta2_field, af_field)

Arguments

data

raw input data

beta1_field

field name of effect size for the first phenotype

beta2_field

field name of effect size for the second phenotype

af_field

field name of allele frequency information

Value

a data frame containing effect sizes of variants on two phenotypes and their allele frequency information

Examples

data <- data.frame(x = rnorm(10), y = rnorm(10), z = runif(10, 0,1))
data <- format_ALLSPICE_data(data=data, beta1_field = 'x', beta2_field = 'y', af_field = 'z')

get_ac_mat

Description

simulation function: simulate allele count information for 'n_var' variants, with a maximum allele count 'max_cnt'

Usage

get_ac_mat(n_var, max_cnt = 100)

Arguments

n_var

total number of variants

max_cnt

maximum allele count, default 100

Value

A 'n_var'x'n_var' diagnal matrix of allele count information for 'n_var' variants

Examples

ac_mat <- get_ac_mat(n_var=100, max_cnt = 100)

get_af_mat

Description

simulation function: compute allele frequency information variants with allele counts stored in diagonal matrix 'AC' from a population of sample size 'n_ind'

Usage

get_af_mat(AC, n_ind)

Arguments

AC

a diagonal matrix of allele count information for all variants

n_ind

total number of individuals in the population

Value

A 'n_var'x'n_var' diagnal matrix of allele frequency information for 'n_var' (dimension of 'AC') variants

Examples

af_mat <- get_af_mat(AC = c(20, 50, 10, 1, 5), n_ind = 10000)

get_beta_hat

Description

simulation function: compute effect sizes estimated form linear regression model

Usage

get_beta_hat(Y, X, A, n_ind)

Arguments

Y

phenotype information

X

genotype information

A

Allele frequency information

n_ind

total number of individuals

Value

A 2x'n_var' matrix of estimated effect size information (first row corresponds to the first phenotype, second row corresponds to the second phenotype)

Examples

AC <- get_ac_mat(n_var=100)
A <- get_af_mat(AC=AC, n_ind=10000)
X <- get_geno_mat(AC, n_ind=10000)
b <- get_true_beta(n_var=100, c=0.6, pi=0.5, sigma=1, null=TRUE)
Y <- get_pheno_pair(b=b, X=X, r=0.5)
b_hat <- get_beta_hat(Y=Y, X=X, A=A, n_ind=10000)

get_c_hat

Description

ALLSPICE function: compute the slope 'c' that maximize the likelihood (maximum likelihood estimate - MLE)

Usage

get_c_hat(b1_hat, b2_hat, A, r)

Arguments

b1_hat

estimated effect size of the first phenotype across all variants

b2_hat

estimated effect size of the second phenotype across all variants

A

Allele frequency information

r

phenotypic correlation between the two phenotypes

Value

the MLE of slope between two sets of effect sizes

Examples

AC <- get_ac_mat(n_var=100)
A <- get_af_mat(AC=AC, n_ind=10000)
X <- get_geno_mat(AC, n_ind=10000)
b <- get_true_beta(n_var=100, c=0.6, pi=0.5, sigma=1, null=TRUE)
Y <- get_pheno_pair(b=b, X=X, r=0.5)
b_hat <- get_beta_hat(Y=Y, X=X, A=A, n_ind=10000)
b1_hat <- matrix(b_hat[1, ], nrow = 1)
b2_hat <- matrix(b_hat[2, ], nrow = 1)
c_hat <- get_c_hat(b1_hat=b1_hat, b2_hat=b2_hat, A=A, r=0.5)

get_geno_mat

Description

simulation function: simulate genotype information for a set of loci with allele counts 'AC'

Usage

get_geno_mat(AC, n_ind)

Arguments

AC

allele counts of loci (length 'm')

n_ind

total number of indicitions

Value

An 'n_ind'x'm' matrix of genotype information of 'n_ind' individuals and 'm' variants

Examples

geno_mat <- get_geno_mat(AC = c(20, 50, 10, 1, 5), n_ind = 10000)

get_likelihood_test_stats

Description

ALLSPICE function: compute the maximum likelihood ratio of the ALLSPICE test statistic

Usage

get_likelihood_test_stats(n_ind, r, b1_hat, b2_hat, c, A)

Arguments

n_ind

total number of individuals

r

phenotypic correlation between the two phenotypes

b1_hat

estimated effect size of the first phenotype across all variants

b2_hat

estimated effect size of the second phenotype across all variants

c

MLE of the slope between the two sets of variant effect sizes

A

Allele frequency information

Value

A single numeric value representing the test statistic of ALLSPICE (maximum likelihood ratio)

Examples

AC <- get_ac_mat(n_var=100)
A <- get_af_mat(AC=AC, n_ind=10000)
X <- get_geno_mat(AC, n_ind=10000)
b <- get_true_beta(n_var=100, c=0.6, pi=0.5, sigma=1, null=TRUE)
Y <- get_pheno_pair(b=b, X=X, r=0.5)
b_hat <- get_beta_hat(Y=Y, X=X, A=A, n_ind=10000)
b1_hat <- matrix(b_hat[1, ], nrow = 1)
b2_hat <- matrix(b_hat[2, ], nrow = 1)
c_hat <- get_c_hat(b1_hat=b1_hat, b2_hat=b2_hat, A=A, r=0.5)
lambda <- get_likelihood_test_stats(n_ind=10000, r=0.5, b1_hat=b1_hat, b2_hat=b2_hat, c=c_hat, A=A)

get_mle_beta

Description

ALLSPICE function: compute the effect size estimates that maximize the likelihood (maximum likelihood estimate - MLE) conditioning on c

Usage

get_mle_beta(b1_hat, b2_hat, c, r, null = TRUE)

Arguments

b1_hat

estimated effect size of the first phenotype across all variants

b2_hat

estimated effect size of the second phenotype across all variants

c

slope between the two sets of variant effect sizes, only applicable when 'null' == TRUE

r

phenotypic correlation between the two phenotypes

null

whether to simulate data under the null hypothesis (no linear relationship) or the alternative hypothesis

Value

A 2x'n_var' matrix of MLE estimated effect size information (first row corresponds to the first phenotype, second row corresponds to the second phenotype)

Examples

AC <- get_ac_mat(n_var=100)
A <- get_af_mat(AC=AC, n_ind=10000)
X <- get_geno_mat(AC, n_ind=10000)
b <- get_true_beta(n_var=100, c=0.6, pi=0.5, sigma=1, null=TRUE)
Y <- get_pheno_pair(b=b, X=X, r=0.5)
b_hat <- get_beta_hat(Y=Y, X=X, A=A, n_ind=10000)
b1_hat <- matrix(b_hat[1, ], nrow = 1)
b2_hat <- matrix(b_hat[2, ], nrow = 1)
b_mle <- get_mle_beta(b1_hat=b1_hat, b2_hat=b2_hat, c=0.6, r=0.5, null=TRUE)

get_pheno_pair

Description

simulation function: simulate true phenotype values of a pair of phenotypes

Usage

get_pheno_pair(b, X, r)

Arguments

b

true effect size matrix of variants on the two phenotypes

X

genotype matrix

r

phenotypic correlation between the two phenotypes

Value

A 2x'n_ind' matrix of phenotype information (first row corresponds to the first phenotype, second row corresponds to the second phenotype)

Examples

AC <- get_ac_mat(n_var=100)
X <- get_geno_mat(AC, n_ind=10000)
b <- get_true_beta(n_var=100, c=0.6, pi=0.5, sigma=1, null=TRUE)
Y <- get_pheno_pair(b=b, X=X, r=0.5)

get_single_geno

Description

simulation function: simulate genotype information for one locus, where 'cnt' samples out of 'n_ind' has the mutation

Usage

get_single_geno(cnt, n_ind)

Arguments

cnt

number of individuals with the mutation

n_ind

total number of individuals

Value

A binary vector representing the genotype information of 'n_ind' individuals for a particular locus, where 'cnt' entries has value 1.

Examples

geno <- get_single_geno(cnt = 100, n_ind = 10000)

get_true_beta

Description

simulation function: simulate true effect size information of 'n_var' variants for two phenotypes

Usage

get_true_beta(n_var, c, pi, sigma, null = TRUE)

Arguments

n_var

total number of variants

c

slope between the two sets of variant effect sizes, only applicable when 'null' == TRUE

pi

probability of variant of having no effect on the phenotype

sigma

variance of the two sets of effect sizes

null

whether to simulate data under the null hypothesis (no linear relationship) or the alternative hypothesis

Value

A 2x'n_var' matrix of effect size information for 'n_var' variants (first row corresponds to the first phenotype, second row corresponds to the second phenotype)

Examples

true_beta <- get_true_beta(n_var=100, c=0.6, pi=0.5, sigma=1, null=TRUE)